Using Non-Experimental, Observational Data to Make Causal Claims

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disproving Causal Relationships Using Observational Data

Economic theory is replete with causal hypotheses that are scarcely tested because economists are generally constrained to work with observational data. This article describes the use of causal inference methods for testing a hypothesis that one random variable causes another. Contingent on a sufficiently strong correspondence between the hypothesized cause and effect, an appropriately related ...

متن کامل

Causal Discovery from a Mixture of Experimental and Observational Data

This paper describes a Bayesian method for combining an arbitrary mixture of observational and experimental data in order to learn causal Bayesian networks. Observational data are passively observed. Experimental data, such as that produced by randomized controlled trials, result from the experimenter manipulating one or more variables (typically randomly) and observing the states of other vari...

متن کامل

How to Make Causal Inferences Using Texts

New text as data techniques offer a great promise: the ability to inductively discover measures that are useful for testing social science theories of interest from large collections of text. We introduce a conceptual framework for making causal inferences with discovered measures as a treatment or outcome. Our framework enables researchers to discover high-dimensional textual interventions and...

متن کامل

Causal Methods for Observational Data

Comparative effectiveness research often uses non-experimental observational data (like hospital discharge records or nationally representative surveys) to draw causal inference about the effectiveness of interventions for health. These ex post inferences require the careful use of specialized statistical methods in order to account for issues like selection bias and unmeasured heterogeneity. T...

متن کامل

Causal inference with observational data

Identifying the causal impact of some variables X on y is difficult in the best of circumstances, but faces seemingly insurmountable problems in observational data, where X is not manipulable by the researcher and cannot be randomly assigned. Nevertheless, estimating such an impact or “treatment effect” is the goal of much research, even much research that carefully states all findings in terms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Epidemiology

سال: 2006

ISSN: 1476-6256,0002-9262

DOI: 10.1093/aje/163.suppl_11.s70-a